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Impinging Jets 
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Products

2. Jet Atomization, Spray 
Formation, and Droplet Dynamics  

3. Interfacial Reactions and Transport at 
Atomistic, Molecular, Micro, and Meso Scales  

4. Ignition and Reaction 
Mechanisms in Gas Phase  

5. Modeling, Simulation, and 
Diagnostics of Overall Processes  
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Liquid Sprays in the Apollo Project 

Khare, Ma, Chen & Yang/Georgia Tech 3 
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Governing Equations  

•  Incompressible, variable-density, Navier-Stokes equations: 
 
 
 
 

•  Volume fraction, two-phase fluid density and viscosity: 
 
 

•  Advection for volume fraction: 
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Coupled Eulerian Volume-of-Fluid and  
Lagrangian Particle Tracking Method 

• Coupling between Eulerian/Lagrangian algorithms:   
• Two-way coupling approach is implemented for the interaction between 

Eulerian flow field and Lagrangian particles; 
• Smooth force distribution is used to resolve different size particles.  

• Conversion of small droplets from Eulerian description into 
Lagrangian particles:   

• Eulerian droplets smaller than a prescribed threshold volume are removed 
(void fraction set to zero) and replaced by a Lagrangian point particle; 

• Lagrangian point particles can be transformed back into a VOF-resolved 
droplet based on its proximity with the VOF interface or pre-specified 
region; 

• Other criterions such as droplet sphericity are being tested; 
• The transformations have been integrated into the AMR framework. 
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Adaptive Mesh Refinement 

• Quad/Octree AMR Gerris code by Popinet S.  
  (J. Comput. Phys.  2003, 2009); 
• Improve interfacial resolution and  
  computational efficiency; 
• Efficient to deal with reconnection and  
  breakup of interfaces; 
• Refinement criteria: voticity, gradient, curvature   

etc. 
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Movie 
We=27.5 
Re=1000 
D=0.5 mm 
U=2 m/s 
µ= 1×10-3 N·s/m2  
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    We=27.5, Re=1000, D=0.5 mm, U=2 m/s,    =1000 kg/m3, µ= 1×10-3 N·s/m2  ρ
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• Characteristic parameters:  
 
 

• Capillary instability (low speed) 
• Kelvin-Helmholtz instability (medium speed) 
• Impact wave mechanism (high speed) 

Breakup Regimes and Mechanisms 

Regime diagram  produced by H. K. Ciezki et al. 2006 
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Verfication of Low-Velocity Impinging Jets  
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Level 7 Level 8 Level 9 

Rim Pattern Under Different Grid Resolution 
Glycerine–Water Jets, Dj = 0.4 mm, Vj = 6 m/s, 2θ = 90º, Re = 40.4, We = 58.8 

D/Δx=7.68 D/Δx=15.36 D/Δx=30.72 

Level 10 

D/Δx=61.44 
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Level 7 

Atomization Under Different Grid Resolution 
Water Jets, Dj = 0.635 mm, Vj = 18.5 m/s, 2θ = 60º, Re = 11724, We = 2987 
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Level 8 

Atomization Under Different Grid Resolution 
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Level 9 

Atomization Under Different Grid Resolution 
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Level 7 Level 8 Level 9 

Atomization Under Different Grid Resolution 

D/Δx=7.68 D/Δx=15.36 D/Δx=30.72 
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    Water Jets, Dj = 0.33 mm, Vj = 28 m/s, 2θ = 60º, Re = 9240, We = 3556 

Impinging Jet Dynamics (GT Simulation) 
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Movie    Re = 9240    We = 3560 
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Probability Density Function of Droplet Size 
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Ref: Atomization characteristics of impinging liquid jets, JPP 1995 
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Impact Wave 

damped impact wave 
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Breakup Caused by Impact Wave 
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impact waves 

ligament formation 

droplet formation 

Impinging Jet Dynamics 

impingement 
stagnation point 

U0 U0 

0 0vorticity, /z D Uω

2θ 

Us 

λ 



School of Aerospace Engineering  

    

    

We=6195 

We=12390 

Impact-wave-induced Atomization 

interface colored by z coordinate 

breakup happens  
between wave crest  
and trough 

ligaments locate along 
wave crest and trough 

complex  breakup 
of liquid sheet 
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Interface & 
Dye Variable 

Averaged 
Volume Fraction 

Averaged 
Dye Variable 

Impact Wave Enhanced Mixing 

0.25 isoline 

Ref: Mixing mechanisms in a pair of impinging jets, JPP 2001 
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Impact Wave Enhanced Mixing 

Water 
U = 9.75 m/s 
Re = 5460 
We = 732 

Freon 
U = 7.62 m/s 
Re = 11732 
We = 3229 
 

Ref: High Performance N2O4/AMINE Elements: Blowapart, NASA CR-160273, 1979 
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Simulation Setup 
Tetradecane Droplets in 1 atm. Nitrogen 

Density Ratio: 666  Viscosity Ratio: 119 

 Domain: 3D×3D×9D 

3D 

D 

U U 

24 CPUs 
about 600,000 AMR grids with load-balancing 
equivalent to about 50,000,000 fixed sized grids 
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Impact Parameter 

Weber Number 
 

Coalescence ▲ 

Separation ■ 

Regimes of Coalescence and Separation 

(I) coalescence after minor deformation, (II) bouncing, (III) coalescence after 
substantial deformation, (IV) reflexive separation, (V) stretching separation 
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Ref:  Qian, J. and Law, C.K. Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 1997, 331(-1), 59-80. 
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Grid Resolution at Max Deformation 

    ×2 

    ×8 

    ×32     ×128     ×512 

Level 4 

Level 15 

droplet diameter : 300 µm  
max resolution : 0.015 µm 
mean free path of gas molecules: ~0.1 µm 
Van der Waals force affect distance: ~0.03 µm 

thickness-based refinement 

at least 3~5 grids in gas film to 
catch lubrication dynamics 

impact plane 
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hmin

r

hcenterp(r,t)

Effect of Gas Film Lubrication 

• The pressure generated within the film will prevent the motion of the approaching droplets.  
• The normal component of collision motion is normal squeeze action that provides a valuable 

cushioning effect when the surfaces of the two droplets tend to be pressed together. 
• It is known from “Reynolds equation” which governing the pressure distribution in fluid 

film lubrication that the pressure is maximum at the center and minimum at the boundary. 
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Movie 

Head-on Bouncing 
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T=0.4 T=0.6 

T=0.9 T=1.6 
We=8.6, Re=105.9, B=0.0, D=306 µm, U=0.97 m/s, ρ=758 kg/m3, µ= 2.13×10-3 N·s/m2  

Droplet Bouncing 
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T=0.4 T=0.6 

T=0.9 T=1.6 

Droplet Bouncing 

We=8.6, Re=105.9, B=0.0, D=306 µm, U=0.97 m/s, ρ=758 kg/m3, µ= 2.13×10-3 N·s/m2  
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    We=48.8, Re=260.3, B=0.9, D=306 µm, U=2.31 m/s, ρ=758 kg/m3, µ= 2.13×10-3 N·s/m2  

Off-center Droplet Bouncing 

Movie 
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    We=48.8, Re=260.3, B=0.9, D=306 µm, U=2.31 m/s, ρ=758 kg/m3, µ= 2.13×10-3 N·s/m2  

Off-center Droplet Bouncing 

t1 t2 

t3 t4 
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    We=48.8, Re=260.3, B=0.9, D=306 µm, U=2.31 m/s, ρ=758 kg/m3, µ= 2.13×10-3 N·s/m2  

Off-center Droplet Bouncing 

t5 t6 

t7 t8 
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Off-center Droplet Bouncing 

Level 10 

Level 4 t2 

t5 Level 4 

Level 11 
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Pressure Buildup at Collision Plane 

pressure 

velocity 
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T=0.4 T=0.6 

T=0.9 T=1.6 
We=61.4, Re=296.5, B=0.06, D=336 µm, U=2.48 m/s, ρ=758 kg/m3, µ= 2.13×10-3 N·s/m2  

Droplet Collision & Reflexive Separation 
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T=1.9 T=2.1 

T=2.9 T=4.3 

Droplet Collision & Reflexive Separation 
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T=4.5 T=4.9 

T=5.1 T=5.4 

Droplet Collision & Reflexive Separation 
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Movie 

Droplet Collision & Reflexive Separation 
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T=0.4 
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T=0.6 
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T=0.9 
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T=1.4 
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T=1.6 
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T=1.9 
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T=2.1 
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T=2.9 
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T=4.3 
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T=4.5 
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T=4.9 
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T=5.1 
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T=5.4 
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T=0.2 T=0.3 

T=0.8 T=1.3 

Droplet Collision & Stretching Separation 

We=65.1, Re=320.3, B=0.49, D=370 µm, U=2.43 m/s, ρ=758 kg/m3, µ= 2.13×10-3 N·s/m2  
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T=1.8 T=2.3 

T=2.8 T=3.3 
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T=3.8 T=4.3 

T=4.6 T=4.8 
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Droplet Collision & Stretching Separation Droplet Collision & Stretching Separation 
Movie 
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T=0.2 
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T=0.25 
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T=0.3 
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T=0.35 
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T=0.4 
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T=0.45 
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T=0.5 
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T=0.55 
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T=0.6 



School of Aerospace Engineering  

    

T=0.8 
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T=1.3 
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T=1.8 
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T=2.3 
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T=2.8 
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T=3.3 
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T=3.8 
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T=4.3 
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T=4.6 
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T=4.8 
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Droplet Collision Dynamics and Mixing 

Reflexive 
Separation 

Stretching 
Separation 

Coalescence 

We=61.4, Re=296.5, B=0.06 
D=336 μm, U=2.48 m/s.  

We=65.1, Re=320.3, B=0.49 
D=370 μm, U=2.43 m/s. 

We=60, Re=292.9, B=0.2 
D=336 μm, U=2.45m/s.  
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Energy Budget & Droplet Shape 
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Contour of  Mass Transfer Rate 

• Without considering practical effects, such as shear layer mixing, the model gives some 
agreement with the simulation results; 

•  The practical effect can be introduced into present model by adding empirical constant. 
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water in 1 atm air  
density ratio: 815  
viscosity ratio: 56 

Ds

U

U

ρl, μl

ρg, μg

X
σ

s l2 /( )B X D D= +
2

sWe l r
l

U Dρ

σ
=

Dl
2rU U=

Unequal-sized Droplet Collision 

I. coalescence after minor deformation 
II. bouncing 
III. coalescence after major deformation 
IV. reflexive separation 
V. stretching separation 
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T = 0.10 T = 1.00 T = 1.50 

T = 3.50 T = 6.00 

Unequal Reflexive Separation 

Water Droplet 
Diameter Ratio: 0.50 
We = 102, head-on 
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T = 0.10 

Unequal Reflexive Separation  
Droplet Diameter Ratio: 0.50 
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T = 0.50 
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T = 1.00 
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T = 1.50 
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T = 2.00 
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T = 2.50 
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T = 3.00 
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T = 3.50 
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T = 4.00 
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T = 4.50 
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T = 5.00 
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T = 6.00 
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T = 0.10 T = 0.50 T = 1.00 

T = 2.50 T = 3.50 T = 17.00 

Unequal Coalescence Collision 

Water Droplet 
Diameter Ratio: 0.25 
We = 102, head-on 
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T = 0.10 
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T = 0.50 
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T = 1.00 
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T = 1.50 
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T = 2.00 
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T = 2.50 
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T = 3.00 



School of Aerospace Engineering  

    

T = 3.50 
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T = 17.00 
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hcenter

hmin

r

dp

Thin Gas Film Between Droplets 
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Thickness-based Refinement Criterion 
Oriented by Digital Topology 

  
neighbors of one cell 

Every interfacial cell must 
have not less than one 
neighbor of fully gas phase 
and not less than one neighbor 
of fully liquid phase. 

under-resolved resolved refined refined 
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Thin Gas Film between Two Droplets 

  
  

max level : 15 

Dl = 400 μm 

Δx = 0.02 μm  
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    Conditions: water droplets in 1 atm. air, We=1, Re=119.4, B=0, Ds=200 μm, U=0.60 m/s. 

Unequal Bouncing (We = 1) 
Droplet Diameter Ratio: 0.50 
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Movie 
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Unequal Bouncing (We = 1) 
Droplet Diameter Ratio: 0.50 

Conditions: water droplets in 1 atm. air, We=1, Re=119.4, B=0, Ds=200 μm, U=0.60 m/s. 
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    Conditions: water droplets in 1 atm. air, We=1, Re=85.2, B=0, Ds=100 μm, U=0.85 m/s. 

Unequal Bouncing (We = 1) 
Droplet Diameter Ratio: 0.25 
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Movie 
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    Conditions: water droplets in 1 atm. air, We=1, Re=85.2, B=0, Ds=100 μm, U=0.85 m/s. 

Unequal Bouncing (We = 1) 
Droplet Diameter Ratio: 0.25 
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Shape Evolution 
Droplet Diameter Ratio: 0.25 
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    Conditions: water droplets in 1 atm. air, We=10, Re=377.6, B=0, Ds=200 μm, U=1.90 m/s 

Unequal Bouncing (We = 10) 
Droplet Diameter Ratio: 0.50 
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Movie 
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School of Aerospace Engineering  

    Conditions: water droplets in 1 atm. air, We=10, Re=377.6, B=0, Ds=200 μm, U=1.90 m/s 

Unequal Bouncing (We = 10) 
Droplet Diameter Ratio: 0.50 
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    Conditions: water droplets in 1 atm. air, We=10, Re=269.4, B=0, Ds=100 μm, U=2.69 m/s. 

Unequal Bouncing (We = 10) 
Droplet Diameter Ratio: 0.25 
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Movie 
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School of Aerospace Engineering  

    Conditions: water droplets in 1 atm. air, We=10, Re=269.4, B=0, Ds=100 μm, U=2.69 m/s. 

Unequal Bouncing (We = 10) 
Droplet Diameter Ratio: 0.25 
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    Conditions: water droplets in 1 atm. air, We=100, Re=1190.4, B=0, Ds=200 μm, U=6.0 m/s. 

Unequal Merging (We = 100) 
Droplet Diameter Ratio: 0.50 
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Movie 
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School of Aerospace Engineering  
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School of Aerospace Engineering  

    Conditions: water droplets in 1 atm. air, We=100, Re=1190.4, B=0, Ds=200 μm, U=6.0 m/s. 

Unequal Merging (We = 100) 
Droplet Diameter Ratio: 0.50 
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    Conditions: water droplets in 1 atm. air, We=100, Re=851.9, B=0, Ds=100 μm, U=8.51 m/s. 

Unequal Merging (We = 100) 
Droplet Diameter Ratio: 0.25 



School of Aerospace Engineering  

    

Movie 
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    Conditions: water droplets in 1 atm. air, We=100, Re=851.9, B=0, Ds=100 μm, U=8.51 m/s. 

Unequal Merging (We = 100) 
Droplet Diameter Ratio: 0.25 
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Detail Deformation Before Rupture 

T

h

4 4.5 5 5.5 6 6.5

10-4

10-3

10-2

10-1

100

hmin
hcenter
r
dp

Conditions: water droplets in 1 atm. air, We=100, Re=851.9, B=0, Ds=100 μm, U=8.51 m/s. 

• After the formation of the gas film at 
T = 4.26, hmin decreases quickly and 
reaches a static stage with value of 
1.55×10-3D, while hcenter shows a 
continually decreasing.  

• The minimum value of hcenter is 
reached at merging point with a value 
of 8.39×10-4D which is smaller than 
hmin.  

• This means a continually compress 
between the two droplets. 
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Ruptures of Thin Gas Films (We = 100) 

at boundary 

at center 

Before After 
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Detail Deformation Before Rupture 

Conditions: water droplets in 1 atm. air, We=100, Re=851.9, B=0, Ds=100 μm, U=2.69 m/s. 
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0.09D

0.05D

0.73D

0.76D

0.51D

0.53D

Liquid Phase Mixing  
Droplet Diameter Ratio: 0.50 

We = 50 

We = 100 
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0.08D

0.24D

 

0.28D

 

0.50D

0.53D

1.23D

Liquid Phase Mixing 
Droplet Diameter Ratio: 0.25 

We = 50 

We = 100 
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T = 0.10 T = 1.00 T = 1.50 

T = 3.50 T = 6.00 

Water Droplet 
Diameter Ratio: 0.50 
We = 102, head-on 

Unequal Reflexive Separation 
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Movie 

Unequal Reflexive Separation 



School of Aerospace Engineering  

    

T = 0.10 

Diameter Ratio: 0.50 
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T = 0.50 
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T = 1.00 
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T = 1.50 



School of Aerospace Engineering  

    

T = 2.00 
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T = 2.50 
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T = 3.00 
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T = 3.50 
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T = 4.00 
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T = 4.50 
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T = 5.00 
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T = 6.00 



School of Aerospace Engineering  

    

Comparison with Experimental Images 

Ref: Coalescence and separation in binary collisions of liquid drops, JFM 1990 
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T = 0.10 T = 0.50 T = 1.00 

T = 2.50 T = 3.50 T = 17.00 

Unequal Coalescence Collision 

Water Droplet 
Diameter Ratio: 0.25 
We = 102, head-on 
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Movie 

Unequal Coalescence Collision 
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T = 0.10 
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T = 0.50 
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T = 1.00 
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T = 1.50 
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T = 2.00 
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T = 2.50 
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T = 3.00 
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T = 3.50 
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T = 17.00 
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Unequal Stretching Separation 

Water Droplet 
Diameter Ratio: 0.50 
We = 52, B = 0.6 
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Unequal Stretching Separation 
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Unequal Stretching Separation 
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Unequal Stretching Separation 
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Unequal Stretching Separation 
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Unequal Stretching Separation 
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Unequal Stretching Separation 
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Unequal Stretching Separation 
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Stage One: 
Transform liquid phase where two droplets are in contact into gas phase 
 
Stage Two: 
Impose volume source at the interface 
Since new volume is generated by chemical reaactions, volume sources or sinks 
should be found at the interface.  An obvious approach is 
 
 
 
where     is the volumetric mass source of gas. A volume balance is given on the 
right hand side.  
 

Two-Stage Interfacial Reactions 

1 1( )
g l

m
ρ ρ

∇ ⋅ = −u &

Ref: Direct numerical simulation of evaporating droplets, JCP 2008 

m&
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Droplet Collision with Interfacial Reaction 
Axi-symmetric Simulation 
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Droplet Collision with Interfacial Reaction 
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Droplet Collision with Interfacial Reaction 
Axi-symmetric Simulation 



School of Aerospace Engineering  

    

Droplet Collision with Interfacial Reaction 
Axi-symmetric Simulation 
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Droplet Collision with Interfacial Reaction 
3-D simulation 

Movie 



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    



School of Aerospace Engineering  

    

Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 
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Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 
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Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 



School of Aerospace Engineering  

    

Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 



School of Aerospace Engineering  

    

Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 



School of Aerospace Engineering  

    

Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 



School of Aerospace Engineering  
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Droplet in Pool with Interfacial Reaction 
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Droplet in Pool with Interfacial Reaction 
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Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 
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Droplet in Pool with Interfacial Reaction 
Axi-symmetric Simulation 
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Movie 

Droplet-Film Collision with Gas Generation 
3-D Simulation Droplet in Pool with Interfacial Reaction 

3-D simulation 
Movie 
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Breakup of Liquid Droplets 
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Non-dimensional Parameters and Time Scales 

Khare & Yang/Georgia Tech 300 

Time Scale Definition Remarks 

convective time 

deformation 
response time 

transport time 
(gas)     

transport time 
(liquid) 

/c D Uτ =

3 /r l Dτ ρ σ= 2 2l
r c

g

We ρτ τ
ρ

=

2
, /v g gDτ ν= 2 2

,2Re
l

r v g
g

We ρτ τ
ρ

=

Weber number, We 

Reynolds number, Re 

Density ratio 

Viscosity ratio 

Ohnesorge number,  
Oh 

2
gU Dρ
σ

l

l D
µ
ρ σ

g

g

UDρ
µ

l

g

ρ
ρ

l

g

µ
µ

U 

Dimensional Analysis 

1 2 3 4 5

( , , , , , , , ) 0

      ( , , , , ) 0
g l g lf t u D

F
σ µ µ ρ ρ

π π π π π

=

=

2
, /v l lDτ ν=

2
2 2

,2 2Re
l l

r v l
g g

We ρ ντ τ
ρ ν
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Breakup Regime Diagram (1 atm) 

l

l

Oh
D
µ
ρ σ

=
2

gU D
We

ρ
σ

=

Fluid 
(in air) 

ρ (kg/m3) µx104 
(kg/m-s) 

σx103 (N/m) 

Water 1000 7.89 72.8 

n-Heptane 683 3.94 20.0 

Mercury 13600 15.0 475.0 

Glycerol (84%) 1219 1000 63.2 

Glycerol (99.9%) 1260 12500 62.0 

301 Khare & Yang/Georgia Tech L.-P. Hsiang & G. M. Faeth, Drop deformation and breakup due to shock wave and steady disturbances, IJMF, 1995. 

Oscillatory breakup Bag breakup 

Multimode breakup Shear breakup 

Ohnesorge Number

W
eb

er
N

um
be

r

10-4 10-3 10-2 10-1 100 101 10210-1

100

101

102

103

104

0.85 µm (Water)
50 µm (Water)
100 µm (Water)
1 mm (Water)
1.2 mm (84% Glycerol)
1.55 mm (99.9% Glycerol)
0.5 mm (n-Heptane)
0.85 mm (Mercury)

Piercing Breakup

Shear Breakup

Multimode Breakup
Bag Breakup

Oscillatory Deformation

10% < Deformation < 20%

5% < Deformation < 10%

Ohnesorge Number 

W
eb

er
 N

um
be

r 



School of Aerospace Engineering  

    

Breakup Regime Diagram (1 atm) 

302 Khare & Yang/Georgia Tech L.-P. Hsiang & G. M. Faeth, Drop deformation and breakup due to shock wave and steady disturbances, IJMF, 1995. 

Ohnesorge Number 

W
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Fluid 
(in air) 

ρ (kg/m3) µx104 
(kg/m-s) 

σx103 (N/m) 

Water 1000 7.89 72.8 

n-Heptane 683 3.94 20.0 

Mercury 13600 15.0 475.0 

Glycerol (84%) 1219 1000 63.2 

Glycerol (99.9%) 1260 12500 62.0 

Oscillatory breakup Bag breakup 

Multimode breakup Shear breakup 

l

l

Oh
D
µ
ρ σ

=
2

gU D
We

ρ
σ
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Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

100 12 100 24 7609 

303 

Oscillatory Breakup 
water droplet in air (100 atm) 

t = 4.16 µs t = 50 µs t = 66.6 µs 

t = 83.3 µs t = 130 µs t = 204.6 µs 

Lateral deformation and bag formation Oscillation and dome formation 

Droplet stretching and breakup 

spatial resolution: 10-3 droplet diameter 
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shear    
stress 

T 
 
 
 
 
 

shear    
stress 

T 
 
 
 
 
 

Oscillatory Breakup of Water Droplet 
(Streamlines, Gauge Pressure and Shear Stress) 

304 Khare & Yang/Georgia Tech streamlines in moving coordinate system with droplet 

Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

100 12 100 24 7609 

t = 4.16 µs t = 16.67µs 

t = 50 µs t = 50 µs 

shear    
stress 

T 
 
 
 
 
 

gauge  
pressure 

T 
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shear    
stress 

T 
 
 
 
 
 

shear    
stress 

T 
 
 
 
 
 

Khare & Yang/Georgia Tech 305 

streamlines in fixed coordinate system 

t = 130 µs 

Oscillatory Breakup of Water Droplet 
(onset of breakup) 

t = 130 µs 
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Bag Breakup 

100 atm 

100 µm 

50 µm 

256 µm 

750 µm 

10 m/s 

100 m/s 

water droplet in air 
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Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

50 20 100 33 6342 

307 

Bag Breakup 
water droplet in air (100 atm) 

t = 1.0 µs t = 10.0 µs 

t = 19.7 µs t = 21.0 µs 

Lateral deformation  
and bag formation 

Bag breakup followed by rim breakup 

t = 57.8 µs 
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Water - Air System – Bag Breakup (100 atm) 

Diameter (µm) Velocity (m/s) Weg Reg 

50 20 33 6342 

t = 1.00 µs t = 10.00 µs t = 20.00 µs t = 21.0 µs 

Another view 
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Water - Air System – Bag Breakup (100 atm) 

Diameter (µm) Velocity (m/s) Weg Reg 

50 20 33 6342 

t = 20.00 µs 
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Water - Air System – Bag Breakup (100 atm) 

Diameter (µm) Velocity (m/s) Weg Reg 

50 20 33 6342 

t = 20.00 µs 
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Water - Air System – Bag Breakup (100 atm) 

Diameter (µm) Velocity (m/s) Weg Reg 

50 20 33 6342 

t = 20.00 µs 
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Bag Breakup of Water Droplet 
(Streamlines and Gauge Pressure) 

Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

50 20 100 33 6342 

t = 10 µs t = 1 µs 

t = 19.7 µs t = 20 µs 

gauge  
pressure 

T 
 
 
 
 
 

gauge  
pressure 

T 
 
 
 
 
 

gauge  
pressure 

T 
 
 
 
 
 

gauge  
pressure 

T 
 
 
 
 
 

Gauge pressure = (p – p0)/(density*U2) 
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Onset of Breakup 
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t = 19.7 µs 

.SE Aσ=

gauge  
pressure 

T 
 
 
 
 
 

gauge  
pressure 

T 
 
 
 
 
 

Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

50 20 100 33 6342 

Gauge pressure = (p – p0)/(density*U2) 
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Multimode Breakup 

100 atm 

100 µm 

50 µm 

256 µm 

750 µm 

10 m/s 

100 m/s 

water droplet in air 
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Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

100 42 100 292 26635 

t = 0.0 µs  

t = 19.0 µs  

Multimode Breakup 
Water droplet in air (100 atm) 

t = 8.3 µs  

t = 11.9 µs  

lateral deformation, bag, stem and lip formation 

bag and lip thinning 

315 Khare & Yang/Georgia Tech 

          bag/lip breakup followed by rim and stem breakup  

t = 52.5 µs  
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Multimode Breakup of Water Droplet 
(Streamlines and Gauge Pressure around the onset of breakup) 

Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

100 42 100 292 26635 

t = 8.3 µs  t = 11.9 µs  

gauge 
 pressure 

T 
 
 
 
 
 

gauge 
 pressure 

T 
 
 
 
 
 

Gauge pressure = (p – p0)/(density*U2) 
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Onset of Breakup : Energy Consideration 

Khare & Yang/Georgia Tech 317 

.SE Aσ= t = 11.9 µs 
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Shear Breakup 

100 atm 

100 µm 

50 µm 

256 µm 

750 µm 

10 m/s 

100 m/s 

water droplet in air 
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Diameter (µm) Velocity (m/s) p (atm) Weg Reg 

256 100 100 4237 162350 

Shear Breakup 
Water droplet in air (100 atm) 

t = 0.30 µs t = 0.92 µs 

t = 1.84 µs t = 2.46 µs 
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256 µm 

Shear Breakup - Length Scales 
Water droplet in air (100 atm) 

1 µm 



School of Aerospace Engineering  

    Khare & Yang/Georgia Tech 

We = 112,  Oh = 0.0034 

Shear Breakup - Present Simulation 
water droplet in air (1 atm) 

Features: 
• Sheet thinning mechanism 
• Rayleigh-Taylor waves 

due to acceleration of a 
higher density fluid in a 
lower density gas. 
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Breakup Regime Diagram (1 atm) 

322 Khare & Yang/Georgia Tech L.-P. Hsiang & G. M. Faeth, Drop deformation and breakup due to shock wave and steady disturbances, IJMF, 1995. 
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Fluid 
(in air) 

ρ (kg/m3) µx104 
(kg/m-s) 

σx103 (N/m) 

Water 1000 7.89 72.8 

n-Heptane 683 3.94 20.0 

Mercury 13600 15.0 475.0 

Glycerol (84%) 1219 1000 63.2 

Glycerol (99.9%) 1260 12500 62.0 

Oscillatory breakup Bag breakup 

Multimode breakup Shear breakup 
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Generalized Regime Diagram 

323 Khare & Yang/Georgia Tech 
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Breakup Modes 

Khare & Yang/Georgia Tech 324 

Oscillatory Breakup Bag Breakup Multimode Breakup Shear Breakup 

t = 4.2 µs  

t = 50.0 µs  

t = 66.7 µs  

t = 204.6 µs  

t = 0.00 µs  

t = 0.2 µs  

t = 1.6 µs  

t = 1 µs  

t = 10 µs  

t = 21 µs  

t = 35 µs  

t = 0.0 µs  

t = 11.9 µs  

t = 52.5 µs  

We = 24 We = 33 We = 292 We = 1400 
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Child Droplet Distribution 

Khare & Yang/Georgia Tech 325 

PDF of child droplet size distribution for We > 300 

We = 858 We = 981 We = 742 

We = 636 We = 537 We = 365 
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256 µm 

Shear Breakup - Length Scales 
water droplet in air (100 atm) 

0.1 µm 
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文翰 

寿比南山 
一百岁生日时, 請我们大家都来! 

Tony: 
All the best of luck! 

We all will come back to celebrate your 
100th birthday! 
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